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1. Introduction

Let ( f1 , ..., fm) be a vector of complex-valued functions fi (i=1, ..., m)
analytic in a neighborhood of infinity. For each natural n we can select a
vector of rational functions

(Q1 �Qn , ..., Qm�Qn)

with polynomials of degree not greater than n such that, for i=1, ..., m,
Qi �Qn interpolates fi at infinity with a degree as high as possible. What can
we say about convergence of these simultaneous rational approximants? It
is very difficult to give an answer without more special assumptions about
the vector. Here we consider a case when each fi is a Markov function.

1.1. AN-Systems. Let us define a particular system. Let m and b be
positive fixed integers,

a=mb.

Suppose for i=1, ..., m, j=1, ..., b, [+i, j] is a set of positive Borel
measures with compact support in R and assume (to exclude trivial cases)
that supp(+i, j ) is an infinite set. By 2i, j we denote the convex hull of
supp(+i, j ), Di=C"2i, 1 , and +$i, j denotes the Radon�Nikodym derivative
of +i, j . Some restrictions on 2i, j are needed:

I. 2i, 1 & 2 j, 1=<, i{ j. (1.1)
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II. If b>1 then

2i, j & 2i, j+1=<, j=1, ..., (b&1).

For fixed i (i=1, ..., m) define

gi, j+1, j (z)=1, j=1, ..., b,

gi, b, b (z)=|
2i, b

d+i, b (x)
z&x

, z # C"2i, b ,

and if b>1, (1.2)

gi, j, k (z)=|
2i, j

gi, j+1, k (x) d+i, j (x)
z&x

, z # C"2i, j

j=1, ..., b&1, k= j, ..., b.

Definition 1. The family [gi, 1, k : i=1, ..., m, k=1, ..., b] where gi, 1, k

is given by (1.1), (1.2) is called an AN-system determined by the measures
(+i, j ).

Since for fixed i the functions gi, j, k are defined recursively the order of
numeration is not arbitrary. If for an AN-system m=1 and b=1, then we
have a simple Markov function. If m=1 and b>1, the AN-system is a
Nikishin system (of order b) on 21, 1 . Such systems were introduced and
studied by Nikishin in [Ni]; further properties can be found in [Ni; NiSo,
Chap. 4.4; Bulo2; Pi; and DriSt]. If m>1 and b=1, the AN-system is an
Angelesco system; see [A]. In [GoRa1] some general results were
obtained on the convergence of simultaneous approximants for the last
systems. In the notation above A stands for Angelesco and N for Nikishin.
In this paper we work with a general AN-system, and assume that all
measures +i, j are given and fixed as above. Note that for fixed i, the system
of functions

gi, 1, k , k=1, 2, ..., b (b>1)

is a Nikishin system.

A family [uk]n
k=0 , uk # C[2] (2 a bounded closed interval), is called a

Chebisheff system of order n if for any reals :k (k=0, 1, ..., n), �n
k=0 :2

k>0,
the function

:
n

k=0

:k uk (x)

has no more than n zeros in 2.
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It is known that if f1 , ..., fr is a Nikishin system (of order r) on 2 and
n0�n1� } } } �nr then

1, ..., xn0&1, f1(x), ..., xn1&1 f1(x), ..., fr (x), ..., xnr&1 fr (x)

is a Chebisheff system of order

n0+n1+ } } } +nr&1.

Moreover, if n0+n1+ } } } +nr&1 distinct points are given in int(2),
there exist polynomials Pk , deg Pk�nk&1, such that

:
n

k=0

Pk(x) fk (x) ( f0=1)

has a simple zero at each one of the fixed points and has no other zeros
in int(2) (see [NiSo, Chap. IV.4, Theorem 4.4, and Corollary]). The same
result remains under the more general condition

nk�&1+max[nk+1, nk+2 , ..., nr]

for k=0, ..., (r&1) (see [DrSt]). This fact will be used below.

1.2. Some Notation

In the sequel 6(n) denotes the set of all polynomials P, deg P�n, n # N.
6*(n) is the set of all monic polynomials in 6(n).

For each n (n>a), i (i=1, ..., m), and j (1� j�b), we fix positive
integers n(i, j ) such that

I. if b>1,

n(i, j )�&1+max[n(i, j+1), ..., n(i, b)],

for j=1, ..., b&1;

II. n= :
m

i=1

:
b

k=1

n(i, k). (1.3)

III. For fixed i (=1, ..., m) and k (=1, ..., b),

n(i, k)
n

�
1
a

.

1.3. Simultaneous Hermite-Pade Approximants for AN-Systems

Given n # N (n>a), we seek polynomials Qn # 6(n), Qn{0, and
Pn, i, k # 6(n), for i=1, ..., m, 1�k�b, such that

Fn, i, k (z) :=Qn (z) gi, 1, k(z)&Pn, i, k (z)=O(z&1&n(i, k)) (1.4)
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as z � �. Pn, i, k is the principal part of Qn gi, n, k at infinity and O denotes
Landau's big oh.

It is easy to show that the above problem has a nontrivial solution.
Indeed, conditions (1.4) yield

:
m

i=1

:
b

k=1

(n(i, k)+n+1)=(n+1)a+n

homogeneous linear equations in the

1+n+ :
m

i=1

:
b

k=1

(n+1)=(n+1)(a+1)

unknown coefficients of Qn and Pn, i, k . We prove below that for any non-
trivial solution deg Qn=n, then it we take Qn # 6*(n) the polynomials
Pn, i, k are uniquely determined by (1.4). The polynomials Pn, i, k introduced
in (1.4) are often called Hermite�Pade polynomials of type II. For a review
on the (strong and weak) asymptotic behavior of Hermite�Pade poly-
nomials see [ApSt].

Definition 2. Let Qn , Pn, i, k be given as above (Qn # 6*(n)). The vector

\Pn, 1, 1

Qn
, ...,

Pn, 1, b

Qn
,

Pn, 2, 1

Qn
, ...,

Pn, m, b

Qn +
is called a simultaneous rational (or Hermite�Pade) approximant to the
vector

(g1, 1, 1 , ..., g1, 1, b , g2, 1, 1 , ..., gm, 1, b).

Remarks. If m=1 and b=1 we have the (n, n) Pade approximant to a
single Markov function (g=g1, 1, 1). From Markov's classical theorem we
know that, in such a case, Fn, 1, 1 �Qn converges uniformly to zero on each
compact subset of D1 , briefly

Pn, 1, 1

Qn
� g1, 1, 1 , inside D1 .

Moreover,

lim
n } g1, 1, 1(z)&

Pn, 1, 1

Qn
(z) }

1�n

�e&2g(z, �), (1.5)
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where g(z, �) is Green's function of the domain D1 . If +$1, 1>0 a.e. on 21 ,
we have equality and a regular limit in (1.5).

In [GoRa1] the convergence of the simultaneous approximants for an
Angelesco system was studied. They obtained results analogous to (1.5)
(with +$i, j>0 a.e.) and proved that, in general, we cannot expect con-
vergence of the approximant in the largest possible region.

In [BuLa1] the convergence of the Hermite�Pade approximants for a
Nikishin system was studied (m=1, b>1) without any additional assump-
tion on +i, j . Here, we always have convergence of the rational approximants
in the largest possible region (n(1, 1)&n(1, b)�1).

Here we present some new results for AN-systems combining ideas of
[GoRa1] and [BuLo1]. The first step is to find a function H(z) such that

lim
n

|Qn (z)| 1�n=H(z).

To this end we follow the potential-theoretic approach employed in
[GoRa1]. We need some extremal relations. We will introduce some
auxiliary functions which allow us to show that in (1.4) some extra inter-
polation points appear and the polynomials Qn may be factorized into
orthogonal polynomials with respect to some varying measures. To do it,
no additional hypotheses on the measures +i, j are needed, but for reasons
connected with the solution of the corresponding potential theoretic
problem, we assume that +$i, j>0 a.e. The existence of extra interpolation
points was used in [BuLo1] to prove convergence of the approximants for
a general Nikishin system.

1.4. Statement of the Main Results

The set of all unit (finite) positive Borel measures +, such that
supp +/2 (2 is a fixed bounded closed interval of the real line R) is
denoted by M(2) and Md (2) is the set of all measures * of the form

*=
1
d

:
d

k=1

$tk (1.6)

where t1 , ..., td are points in 2 (not necessarily distinct) and $t is the unit
measure concentrated at point t. We can associate to * the polynomial

p(x)= `
d

k=1

(x&tk) # 6*(d),

and reciprocally to each polynomial in 6*(d) with all its zeros in 2 there
corresponds a unique measure in Md (2).
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The (logarithmic) potential of a measure * # M(2) is denoted by

V* (z) :=|
2

log
1

|z&t|
d*(t), z # C.

The symbol *n � *, applied to sequences of measures, stands for weak
convergence. It is known that M(2) is weakly compact (for this and other
results on potential theory see [Lan], also [NiSo]). Therefore, each
sequence [*n] in M(2) contains a subsequence [*ns] such that *ns � *,
* # M(2). For the intervals 2 considered below,

.n � ., (.n , . # M(2)) � V.n � V. inside C"2.

Our main result is the following

Theorem 1. Suppose that +$i, j>0 a.e. (i=1, ..., m; j=1, ..., b), then there
exist measures .i, 0 # M(2i, 1) such that

lim |Qn (z)| 1�n=exp \&
1
m

:
m

i=1

V.i, 0
(z)+ ,

where Qn is given by (1.4).

As can be seen from the Proof of Theorem 1, the measures .i, 0 are deter-
mined as the (unique) solution of an extremal problem of potential theory.

In regards to the convergence of Hermite�Pade approximants, we have

Theorem 2. Under assumptions of Theorem 1, for i=1, ..., m there exist
measures .i, 0 # M(2i, 1) and (if b>1) .i, 1 # M(2i, 2) such that:

(a) If b>1

lim } gi, 1, 1(z)&
Pn, i, 1(z)
Qn (z) }

1�n

=exp
1
m \&

b&1
b

V.i, 1
(z)+ :

m

k=0

V.k, 0
(z)+V.i, 0

(z)&mi, 1+ ,

where

mi, 1= min
x # 2i, 1 \ :

m

k=0

V.k, 0
(x)&

b&1
b

V.i, 1
(x)+V.i, 0+ (x).
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(b) If b=1 then

lim } gi, 1, 1(z)&
Pn, i, 1(z)
Qn (z) }

1�n

=exp
1
m \ :

m

k=1

V.k, 0
(z)+V.i, 0

(z)&mi, 0+ ,

where

mi, 0= min
x # 2i, 0 \ :

m

k=0

V.k, 0
(x)+V.i, 0

(x)+.

The measures .i, 0 are the same in Theorems 1 and 2. Note that for m>1
and b=1, Theorems 1 and 2 reduce to the main statements in [GoRa1] if
we take ci=1�m. Theorem 2 gives the asymptotic for the first function on
each interval but nothing is said about (gi, 1, k&Pn, 1, k�Qn) when 1<k�b.
To obtain the corresponding asymptotic, new extremal relations are
needed. For this purpose, we need to find new interpolation relations. We
will illustrate the method discussing a particular system.

Theorem 3. Let m=2, b=2, 21, 2=[c1 , d1], and 22, 2=[c2 , d2]
(c1<d1<c2<d2), and suppose that g1, 2, 2, and g2, 2, 2 have finite limits
g1, 2, 2(c&

1 ), g1, 2, 2(d+
1 ), g2, 2, 2(c&

2 ), and g2, 2, 2(d+
2 ). Take n(1, 2)<n(1, 1)

and n(2, 2)<n(2, 1), n=n(1, 1)+n(1, 2)+n(2, 1)+n(2, 2).
Then there exist measures _1 # M(21, 2), _2 # M(22, 2) and constants :1 ,

:2 , ;1 , ;2 , m1 , and m2 such that

lim
n

|(:k z+;k) Fn, k, 1(z)&Fn, k, 2(z)| 1�n=exp 1
4 (2V.k, 0

(z)&V_k (z)&mk),

k=1, 2,

where .k, 0 is given as in Theorems 1 and 2, and _k is the (unique) solution
of the extremal problem

min
x # 2k, 2

(&V.k, 0
(x)+V_k (x))= max

* # M(2k, 2)
min

x # 2k, 2

(&V.k, 0
(x)+2V* (x)).

Theorem 3 will be proved in Section 4. This gives indirect information
about the asymptotic behavior of Fn, 1, 2 and Fn, 2, 2 . The restriction in func-
tion g1, 2, 2 and g2, 2, 2 is due to the fact that we need Fn, 2, 2 and Fn, 1, 2 to
satisfy some orthogonality relations. In proving Theorem 2, we observe
that an extra amount of interpolation points automatically appear on seg-
ment 22, 1 for each one of the functions Fn, 1, 1 and Fn, 2, 1 . For the func-
tion Fn, 1, 1 it is sufficient to infer some extremal relations (see Section 2
below) that allows us to continue the proof as in [BuLo1]. But it is
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expected that for general selections of the indexes n(1, 1), n(1, 2), n(2, 1),
and n(2, 2) there are not sufficient extra interpolation points for Fn, 1, 2 in
22, 1 .

In Theorems 1 and 2 we study a symmetrical case, that is, for i=1, ..., m
we have on 2i, 1 a Nikishin system of order b. It is possible to obtain an
extension to nonsymmetrical cases.

2. Proofs of the Main Theorems

First, let us obtain some auxiliary formulas (for the proofs of the lemmas
see Section 3).

Lemma 2.1. For a fixed i (i=1, ..., m)

(a) |
2i, 1

(Qn gi, 2, k P)(x) d+i, 1(x)=0, k=1, ..., b,

where P # 6(n(i, k)&1) is an arbitrary polynomial.

(b) (PFn, i, k)(z)=|
2i, 1

(Qn gi, 2, kP)(x)
z&x

d+i, 1(x), k=1, ..., b,

where P # 6(n(i, k)) is an arbitrary polynomial.

We will use Lemma 2.1 to obtain some information on the location of
the zeros of Qn . Set

:(n, i, j) := :
b

k= j+1

n(i, k).

Lemma 2.2. deg Qn=n and Qn has exactly :(n, i, 0) zeros (changes of
sign) in 2i, 1 (i=1, ..., m).

For i=1, 2, ..., m, we fix a monic polynomial Qn, i , whose simple zeros
coincide with the zeros of Qn on 2i, 1 , then

Qn= `
m

i=1

Qn, i . (2.1)
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For i=1, ..., m, set

Hn, i, 0(z) :=Qn (z) (2.2)

Hn, i, j (z) :=|
2i, j

Hn, i, j&1(x)
z&x

d+i, j (x), j=1, ..., b.

From (b) in Lemma 2.1 we know that (k=1, P#1, gi, 2, 1#1)

Hn, i, 1(z)=Fn, i, 1(z). (2.3)

Lemma 2.3. (a) If b>1, 1< j�b, then

Hn, i, j (z)=(&1) j+1 Fn, i, j (z)& :
j&1

k=1

(&1) j+k gi, k+1, j (z) Hn, i, k (z).

(b) For i=1, ..., m and j=0, 1, ..., b&1,

|
2i, j+1

Hn, i, j (x) \ :
b

k= j+1

(Pk gi, j+2, k)(x)+ d+i, j+1(x)=0

where Pk # 6(n(i, k)&1) is arbitrary.

The above lemma says that Hn, i, j has at least

:(n, i, j) :
b

k= j+1

n(i, k)

zeros (changes of sign) in 2i, j+1 , for 0� j<b (see Section 1.1).
In the following fix a monic polynomial wn, i, j (i=1, ..., m),

deg wn, i, j= :
b

k= j+1

n(i, k) :=:(n, i, j ), (2.4)

j=0, 1, ..., b&1, whose simple zeros coincide with the points where Hn, i, j

changes sign in 2i, j+1 (note that wn, i, 0=Qn, i).

Lemma 2.4. For i=1, 2, ..., m,

(a) for 0< j<b,

|
2i, j

(Hn, i, j&1 Pj )(x)
d+i, j (x)
wn, i, j (x)

=0
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where Pj is arbitrary, Pj # 6(:(n, i, j&1)&1).

(b) For 0� j<b, Hn, i, j�wn, i, j does not have zeros in 2i, j+1.

(c) For 0< j<b,

Hn, i, j (z)
wn, i, j (z)

=
1

wn, i, j&1(z) |
2i, j

w2
n, i, j&1(x)

z&x
Hn, i, j&1(x)
wn, i, j&1(x)

d+i, j(x)
wn, i, j (x)

.

The assertion (b) in Lemma 2.4 allows us to define new measures *i, j ,
such that polynomials wn, i, j&1 are orthogonals with respect to *i, j . Set

fn, i, b (x)= }Hn, i, b&1(x)
wn, i, b&1(x) }

and

d*i, b(x)= fn, i, b (x) d+i, b (x)

and for b>1, 0< j<b,

fn, i, j (x)=
|Hn, i, j&1(x)|

|wn, i, j&1(x) wn, i, j (x)|

and

d*i, j (x)= fn, i, j (x) d+i, j (x).

Lemma 2.5. Given i (i=1, ..., m),

|
2i, j

w2
n, i, j&1(x) d*i, j (x)=inf

P |
2i, j

P2(x) d*i, j (x)

for j=1, ..., b, where P # 6*(deg wn, i, j&1).

We will use the above relation to obtain a problem in potential theory.

Notation. For i=1, ..., m and j=0, ..., 1, b&1, denote by .n, i, j the
measure in M:(n, i, j )(2i, j+1) associated to wn, i, j (see Notation in Sec-
tion 1.4). We know that .n, i, j # M(2i, j+1). We must show that there exist
.i, j # M(2i, j+1), such that

.n, i, j � .i, j , as n � �, (2.5)

i=1, ..., m; j=0, ..., b&1 (weak convergence). Here the additional
hypothesis +$i, j>0 is needed.
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It is known that M(2i, j+1) is weakly compact. Therefore, each sequence
[.n, i, j ] contains a subsequence which converges weakly to a measure .*i, j

on M(2i, j+1); thus, in order to prove (2.5) it is sufficient to check that any
family of limit measures .*i, j (i=1, ..., m; j=0, ..., b&1) is the unique
solution of a system of extremal equations which does not depend on the
sequence involved in the selection of the limit points .*i, j . In fact, the
extremal equations (and the solution) only depends on the geometrical
distribution of the segments 2i, j and certain numerical constants which
describe the proportion with which interpolation is distributed along the
different segments (and functions).

Following ideas of [GoRa2], the system of equations is obtained from
Lemma 2.5 and

Lemma 2.6 (see [GoRa3]). Let K be a closed ( finite) interval in R,
+ # M(K), +$>0 a.e. Let Rn be a sequence of monic polynomials with all its
zeros in K, deg Rn=rn , rn � �, and hn a sequence of functions, hn{0 on K,
such that

log hn

rn
� h

uniformly in K. If

|
K

|Rn (s)|
|hn (s)|

d+(s)= inf
R # 6*(rn) |

K

|R(s)|
|hn (s)|

d+(s), n=1, 2, ...,

then any limit point & in M(K) of the sequence

&n :=
1
rn

log
1

|Rn|

satisfies the extremal relation

min
x # K

(V&+h)(x)= max
* # M(K)

min
x # K

(V*+h)(x).

Now, suppose that +$i, j>0 a.e. If 4/N and .*i, j # M(2i, j+1) are such
that

.n, i, j � .*i, j , n # 4,

this allows us to write

lim
n # 4

|wn, i, j (z)|1�:(n, i, j)=exp&V.*i, j
(z) (2.6)

where the convergence is uniform on each compact subset of C"2i, j .
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Let .*i, j be defined as above and V.*i, j
be the associated potential, then

Lemma 2.7. (a) For i=1, ..., m,

min
x # 2i, 1\2bV.*i, 0

&(b&1)V.*i, 1
+b :

m

k=1, k{i

V.*k, 0+ (x)

= max
* # M(2i, 1)

min
x # 2i, 1 \2bV*&(b&1)V.*i, 1

+b :
m

k=1, k{i

V.*k, 0+ (x)

where .*i, 1=0 if b=1.

(b) If b>1, for i=1, ..., m and 1< j�b,

min
x # 2i, j

(2(b+1& j) V.*i, j&1
&(b& j )V.*i, j

&(b+2& j )V.*i, j&2
)(x)

= max
* # M(2i, j)

min
x # 2i, j

(2(b+1& j )V*&(b& j )V.*i, j
&(b+2& j )V.*i, j&2

)(x)

where .*i, j=0 if j=b.

Note that, to each segment 2i, j , we associate an extremal equation and
a measure .*i, k . An important remark related to the above system is that,
if we take the measures .*i, k as unknown, this extremal system does not
depend on the measures +i, j and, using techniques from potential theory,
we can prove that such a system has one and only one solution (see
[GoRa1; GoRa3; and NiSo, Chap. V) if the corresponding matrix of the
coefficients satisfies certain conditions.

Lemma 2.8. The extremal problem above has one and only one solution
.i, j , i=1, 2, ..., n, 0� j<b. Moreover, .n, i, j � .i, j .

Lemma 2.9. For i=1, ..., m, let .i, j # M(2i, j) ( j=1, ..., b) be the solution
of the extremal problem above and wn, i, j be defined as in (2.4). Then

lim |wn, i, j (z)| 1�:(n, i, j)=exp(&V.i, j
(z)).

Proof of Theorem 1. Theorem 1 follows from Lemma 2.9 since

|Qn (z)| 1�n= `
n

i=1

|Qn, i (z)| 1�n= `
n

i=1

|wn, i, 0(z)|1�n

=exp {& :
n

i=1

:(n, i, 0)
n

V.n, i, 0
(z)=
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and

:(n, i, 0)
n

�
1
m

.

Proof of (a) in Theorem 2. From (2.3) and (c) of Lemma 2.4 we have
that if b>1,

Fn, i, 1(z)
wn, i, 1(z)

=
Hn, i, 1(z)
wn, i, 1(z)

=
1

wn, i, 0(z) |
2i, 1

w2
n, i, 0(x)

z&x
Hn, i, 0(x)
wn, i, 0(x)

d+i, 1(x)
wn, i, 1(x)

.

We know (see (c) of Lemma 2.4) that Hn, i, 0(x)�wn, i, 0(x) does not change
sign in 2i, 1 ; then using (b) of Lemma 2.1, we have

lim } gi, 1, 1(z)&
Pn, i, 1(z)
Qn (z) }

1�n

=lim } wn, i, 1(z)
Qn (z) wn, i, 0(z) |

2i, 1

w2
n, i, 0(x) |Qn (x)| d+i, j (x)

|Qn, i (x) wn, i, 1(x)| }
1�2

=exp
1
a \&(b&1)V.i, 1

+b :
m

k=1

V.k, 0
+bV.i, 0

&mi, 1+ .

We will obtain an exact expression for the constant mi, 1 . We observe
that wn, i, 1 does not have zeros in 2i, 1 and V.n, i, 1

� V.i, 1
uniformly in 2i, 1 .

Set sn=inf[wn, i, 1(x) : x # 2i, 1] and tn=sup[wn, i, 1(x) : x # 2i, 1], then the
sequence tn�sn is bounded.

Set

en=[x # 2i, 1 : |(Qn Qn, i)(x)|>nMn sn]

where

Mn=|
2i, 1

w2
n, i, 0(x) |Qn (x)| d+i, 1 (x)

|Qn, i (x) wn, i, 1(x)|

and En=2i, 1"en , then

+i, 1(en) nMn sn�|
en

|(Qn Qi, n)(x)| d+i, 1(x)�tn Mn .

This says that +i, 1(en) � 0. Taking into account that +$i, 1>0 a.e., we have
|en| � 0, where |A| denotes the Lebesgue measure of A.
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Now we know that

&Qn Qn, i&2i, 1
�&Qn Qn, i&En kn+:(n, i, 0)

n

where kn=�(2 |2i, 1|�|En|&1) � 1, �(x)=x+- x2&1, x�1 (see [NiSo,
Chap. V, Lemma 5.2]), so

Mn�"Qn Qn, i

wn, i, 1 "2i, 1

+i, 1(2i, 1)�
1
sn

&Qn Qn, i&2i, 1
+i, 1(2i, 1)

�
1
sn

&Qn Qn, i&En kn+:(n, i, 0)
n +i, 1(2i, 1)�nMn kn+:(n, i, 0)

n +i, 1(2i, 1).

From the relations above

lim } |2i, 1

w2
n, i, 0(x) |Qn (x)| d+i, 1 (x)

|Qn, i (x) wn, i, 1(x)| }
1�n

=lim "Qn Qn, i

wn, i, 1 "
1�n

2i, 1

=exp
1
a \& min

x # 2i, 1 \&(b&1)V.i, 1
+b :

m

k=1

V.k, 0
+bV.i, 0+ (x)+ . K

Proof of (b) in Theorem 2. Here we use that

lim }gi, 1, 1(z)&
Pn, i, 1(z)
Qn (z) }

1�n

=lim } 1
Qn (z) Qn, i (z) |2i, j

Q2
n, i (x) `

m

k=1, k{i

Qn, k d+i, 1 (x) }
1�n

.

3. Proofs of Lemmas

Proof of Lemma 2.1. The function Fi, 1, k is holomorphic in a neighbor-
hood of infinity. Thus, for sufficiently large R>0 we have (see (1.5))

|
|z|=R

Fn, 1, k (z)=0, j=0, ..., n(i, k)&1.
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Taking into account (1.2), for j=0, ..., n(i, k)&1,

0=|
|z|=R

Fn, 1, k (z) z j dz

=|
2i, 1

gi, 2, k (x) |
|z|=R

Qn (z)z j

z&x
dz d+i, 1(x)

=2?i |
2i, 1

(Qn gi, 2, k)(x) x j d+i, 1(x).

From this follows (a); (b) is obtained analogously. K

Proof of Lemma 2.2. If b=1, taking into account that gi, 2, 1=1, the
second assertion follows immediately from (a) in Lemma 2.1. If b>1, we
have

0=|
2i, 1

Qn (x) :
b

k=1

(Pk gi, 2, k)(x) d+i, 1(x), (3.1)

where Pk # 6(n(i, k)&1) is an arbitrary polynomial. Assume that Qn has at
most �b

k=1 n(i, k)&1 changes of sign on 2i, 1 . Then we can take Pk ,
k=1, ..., b, conveniently so that

� Pk gi, 2, k

changes sign exactly at those points where Qn does (see Section 1.1). There-
fore, Qn has at least

:
b

i=1

n(i, k)

changes of sign on 2i, 1 . Taking into account that deg Qn�n and (1.3), we
have that deg Qn=n. K

Proof of Lemma 2.3. (a) If b>1, using (2.2) and (b) of Lemma 2.1 we
obtain that

Hn, i, 2(z)=|
2i, 2

1
z&x |

2i, 1

Qn (s)
x&s

d+i, 1(s) d+i, 2(x)

=|
2i, 1

Qn (s)
z&s |

2i, 2 \
1

z&x
&

1
s&x+ d+i, 2(x) d+i, 1(s)

=gi, 2, 2(z) Hn, i, 1(z)&|
2i, 1

(Qn gi, 2, 2)(s)
z&s

d+i, 1(s)

=gi, 2, 2(z) Hn, i, 1(z)&Fn, i, 2(z).
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Following the above argument, it is easy to prove that if b>1, 1< j�b,
then

Hn, i, j (z)=(&1) j+1 Fn, i, j (z)& :
j&1

k=1

(&1) j+k gi, k+1, j (z) Hn, i, k (z).

(b) From (2.2) follows that Hn, i, j is analytic in C"2i, j and from (2.3)
and part (a) of this lemma,

Hn, i, j (z)=O(z&1&n(i, j)) (b>1, 1< j�b)

as z � �.
For j=0, (b) is just (3.1) (see (2.3)). If b>1, from (a) in Lemma 2.1 and

(1.2),

0= :
b

k=2
|

2i, 1

(Qn gi, 2, k Pk)(x) d+i, 1(x)

= :
b

k=2
|

2i, 1

(Qn Pk)(x) |
2i, 2

gi, 3, k(s)
x&s

d+i, 2(s) d+i, 1(x)

=&|
2i, 2

Hn, i, 1(s) :
b

k=2

(Pk gi, 3, k)(s) d+1, 2(s).

Thus (b) takes place for j=1.
Making in the formula above P2=0 (if b�3), then

0=|
2i, 2

Hn, i, 1(x) \ :
b

k=3

Pk (x) |
2i, 3

gi, 4, k (s)
x&s

d+i, 3(s)+ d+i, 2(x)

=|
2i, 3

:
b

k=3

gi, 4, k(s) \|2i, 2

Hn, i, 1(x)
x&s \Pk (x)&Pk (s) d+i, 2(x)

&Pk (s) |
2i, 2

Hn, i, 1(x)
x&s

d+i, 2+ d+i, 3(s)

=|
2i, 3

Hn, i, 2(s) \ :
b

k=3

gi, 4, k (s) Pk (s)+ d+i, 3(s).

For other indexes j the proof follows analogously. K

Proof of Lemma 2.4. Note that, if b>1,

Hn, i, j (z)
wn, i, j (z)

, j=1, ..., b&1, (3.2)
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is analytic on C"2i, j and the Laurent expansion of this last function at
infinity starts with

z&1&:(n, i, j&1).

This allows us to prove (as in Lemma 2.1) that for j=1, ..., b&1 (if b>1)

|
2i, j

(Hn, i, j&1 Pj)(x)
d+i, j (x)
wn, i, j (x)

=0

where Pj is arbitrary, Pj # 6(:(n, i, j&1)&1).
We shall show that Hn, i, j�wn, i, j (0< j<b) does not have zeros in 2i, j+1.
From (3.2) (as in Lemma 2.1), we obtain that for j=1, ..., b&1,

Hn, i, j (z)
wn, i, j (z)

=
1

wn, i, j&1(z) |2i, j

wn, i, j&1(x)
z&x

Hn, i, j&1(x)
d+i, j (x)
wn, i, j (x)

=
1

wn, i, j&1(z) |2i, j

w2
n, i, j&1(x)

z&x
Hn, i, j&1(x)
wn, i, j&1(x)

d+i, j (x)
wn, i, j (x)

. (3.3)

We know that wn, i, j has all its zeros in 2i, j+1, thus by a recursive
argument, we only need to prove that Hn, i, 1 �wn, i, 1 does not change sign on
R"2i, 2 . But we know that

Hn, i, 1(z)
wn, i, 1(z)

=
1

Qn, i (z) |2i, 1

Q2
n, i (x)

z&x
Qn (x)

Qn, i (x)
d+i, 1(x)
wn, i, 1(x)

(3.4)

and, according to Lemma 2.2, Qn�Qn, i does not have zeros in 2i, 1 . There-
fore the right-hand side of (3.4) has constant sign on 2i, 2 , which yields our
assertion.

Proof of Lemma 2.5. It is enough to rewrite the formula in (a) of
Lemma 2.4.

For b>1, 1� j<b,

|
2i, j

wn, i, j (x) P(x) d*i, j (x)=0, j=1, ..., b,

where P is an arbitrary polynomial, deg P�&1+�b
k= j n(i, k). K

Proof of Lemma 2.7. We need some results.
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Proposition 1. There exist an infinite set 41/4 and finite constants
di, j , such that for i=1, ..., m, j=1, ..., b,

lim
n # 41

1
:(n, i, j&1)

log } |2i, j&1

w2
n, i, j&2(s) Hn, i, j&2(s) d+i, j&1(s)

(x&s) Wn, i, j&2(s) wn, i, j&1(s) }=di, j .

for x # 2i, j .

Proof. It is sufficient to prove that the sequences involved are bounded.
We need the following result (see [GoRa1, *2, p. 36]): if _$>0 a.e. on 2,
for any sequence of monic polynomials [Pm], with all its zeros on 2,
deg Pm=m,

lim
n \�2 |Pm| d_

&Pm& +
1�m

=1.

If j=2 (here inf means infx # 2i, 1
)

0<exp
1
a {&inf 2V.n, i, 0

(x)+inf \& :
n

k=1, k{i

V.n, k, 0
+V.n, i, 1+ (x)=

=lim inf
4

&w2
n, i, 0&

1�n
2i, 1 \exp

1
n

log inf } Hn, i, 0(x)
wn, i, 0(x) wn, i, 1(x) }+

=lim inf
4 \|2i, j

w2
n, i, 0(s) d+i, 1(s))1�n inf } Hn, i, 0(x)

wn, i, 0(x) wn, i, 1(x) }
1�n

+
�lim inf

4 } |2i, 1

w2
n, i, 0(s) Hn, i, 0(s) d+i, 1(s)

(x&s) wn, i, 0(s) wn, i, 1(s) }
1�n

�lim inf
4 "

w2
n, i, 0 Qn

wn, i, 0 wn, i, 1"
1�n

=exp&inf \lim sup
4

1
n

log |wn, i, 1(x)|+
2
n

log
1

|wn, i, 0(x) }
+ :

m

k=1, k{i

log
1

|wn, i, 0(x) }+
=exp&

1
a

inf {&V.*i, 1
(x)+2V.*i, 0

(x)+ :
m

k{i

V.*i, 0
(x)=<�.

If b>3 and j=3, it is sufficient to note that

kn inf
s # 2i, 2

1
|wn, i, 0(s) wn, i, 2(s)|

inf
t # 2i, 1 }

Qn (t)
Qn, i (t) wn, i, 1(t) } &w2

n, i, 1&2i, 2
&W 2

n, i, 0&2i, 1

� } |2i, 2

w2
n, i, 1(s) Hn, i, 1(s) d+i, 1(s)

(x, s) wn, i, 1(s) wn, i, 2(s) }
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= } |2i, 2

w2
n, i, 1(s) d+i, 2(s)

(x&s) wn, i, 0(s)n, i, 2(s) |
2i, 1

w2
n, i, 0(t) Qn (t) d+i, 1(t)

(s&t) wn, i, 0(t) wn, i, 1(t) }
�ln "

w2
n, i, 1

>2
k=0 wn, t, k"2i, 2

" Qn wn, i, 0

Qn, i wn, i, 1"2i, 1

,

where lim l1�n
n =lim k1�n

n =1.
For other indexes the proof follows analogously. K

Proposition 2. Let 41 be as in Proposition 1, then for i=1, ..., m,
1� j�a, the sequence

1
:(n, i, j&1)

log fn, i, j (x)

converges uniformly (in 2i, j ) to

(a)
b&1

b
V.*i, 1

(x)& :
m

k=1, k{i

V.*i, 0
(x), for j=1 if b>1.

(b)
b& j

b+1& j
V.*i, j

(x)+
b+2& j
b+1& j

V.*i, j&2
(x)+di, j if 1< j<b.

(c) 2V.*i, b&2
(x)+di, b&1 if b>1, j=b.

(d) & :
m

k=1, k{i

V.*i, 0
(x) if b=1= j.

Proof. For j=1, b>1,

1
:(n, i, 0)

log fn, i, 1(x)

=
1

:(n, i, 0)
log } Hn, i, 0(x)

wn, i, 0(x) wn, i, 1(x) }
=

1
:(n, i, 0)

log } Qn (x)
Qn, i (x) wn, i, 1(x) }

=
n

:(n, i, 0) {
:(n, i, 1)

n
V.n, i, 1

(x)& :
m

k=1, k{i

:(n, k, 0)
n

V.n, k, 0
(x)=

�
b&1

b
V.*i, 1

(x)& :
m

k=1, k{i

V.*i, 0
(x).
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For j=2, b�2,

1
:(n, i, 1)

log fn, i, 2(x)

=
1

:(n, i, 1)
log

|Hn, i, 1(x)|
|wn, i, 1(x) wn, i, 2(x)|

=
n

:(n, i, 1) {
:(n, i, 2)

n
V.n, i, 2

(x)+
:(n, i, 0)

n
V.n, i, 0

(x)

+
1
n

log } |2i, 1

w2
n, i, 0(s) Hn, i, 0(s) d+i, 1(s)

(x&s) wn, i, 0(s) wn, i, 1(s) }=
�

b&2
b&1

V.*i, 2
(x)+

b
b&1

V.*i, 0
(x)+di, 2 .

For j=3, b>3,

1
:(n, i, 2)

log fn, i, 3(x)

=
1

:(n, i, 2)
log

|Hn, i, 2(x)|
|wn, i, 2(x) wn, i, 3(x)|

=
n

:(n, i, 2) {
:(n, i, 3)

n
V.n, i, 3

(x)+
:(n, i, 1)

n
V.n, i, 1

(x)

+
1
n

log } |2i, 2

w2
n, i, 1(s) Hn, i, 1(s) d+i, 2(s)

(x&s) wn, i, 1(s) wn, i, 2(s) }=
�

b&3
b&2

V.*i, 3
(x)+

b&1
b&2

V.*i, 1
(x)+di, 3 .

In general, if 1< j<b,

1
:(n, i, j&1)

log fn, i, j (x)

=
1

:(n, i, j&1)
log

|Hn, i, j&1(x)|
|wn, i, j&1(x) wn, i, j (x)|

=
n

:(n, i, j&1) {
:(n, i, j )

n
V.n, i, j

(x)+
:(n, i, j&2)

n
V.n, i, j&2

(x)
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+
1
n

log } |2i, j&1

w2
n, i, j&2(s) Hn, i, j&2(s) d+i, j&1(s)

(x&s) wn, i, j&2(s) wn, j&1(s) }=
�

b& j
b+1& j

V.*i, j
(x)+

b+2& j
b+1& j

V.*i, j&2
(x)+di, j&1.

If b>1 and j=b,

1
:(n, i, b&1)

log fn, i, b (x)

=
1

:(n, i, b&1)
log

|Hn, i, b&1(x)|
|wn, i, b&1(x)|

=
n

:(n, i, b&1) {
:(n, i, b&2)

n
V.n, i, b&2

(x)

+
1
n

log } |2i, b&1

w2
n, i, b&2(s) Hn, i, b&2(s) d+i, b&1(s)

(x&s) wn, i, b&2(s) wn, i, b&1(s) }=
� 2V.*i, b&2

(x)+di, b&1.

If b=1= j,

1
:(n, i, 0)

log fn, i, 1(x)=
1

:(n, i, 0)
log

|Hn, i, 0(x)|
|wn, i, 0(x)|

.

1
:(n, i, 0)

log } Qn (x)
Qn, i (x) }=

1
:(n, i, 0) {& :

m

k=1, k{i

:(n, k, 0)
n

V.n, k, 0
(x)=

� & :
m

k=1, h{i

V.*k, 0
(x). K

Now we will use Lemma 2.6: set for i=1, ..., m, 1� j�b,

hn, i, j=
1

fn, i, j

rn, i, j=2:(n, i, j&1)

and

hi, j=&1
2di, j ,

where ki, j are defined in Proposition 1.
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Taking into account Lemmas 2.5 and 2.6, we obtain that potentials V.*i, j
satisfy the extremal relations:

(I) If j=1 and b>1,

min
x # 2i, 1 \V.*i, 0

&
1
2

b&1
b

V.*i, 1
+

1
2

:
m

k=1, k{i

V.*k, 0
&

1
2

ki, j+ (x)

= max
* # M(2i, 1)

min
x # 2i, 1 \V*&

1
2

b&1
b

V.*i, 1
+

1
2

:
m

k=1, k{i

V.*k, 0
&

1
2

ki, j+ (x),

and this is equivalent to

min
x # 2i, 1 \2bV.*i, 0

&(b&1)V.*i, 1
+b :

m

k=1, k{i

V.*k, 0+ (x)

= max
* # M(2i, 1)

min
x # 2i, 1 \2bV*&(b&1)V.*i, 1

+b :
m

k=1, k{i

V.*k, 0+ (x).

(II) If b>1, 1< j<b,

min
x # 2i, j \2V.*i, j&1

&
b& j

b+1& j
V.*i, j

&
b+2& j
b+1& j

V.*k, j&2+ (x)

= max
* # M(2i, j)

min
x # 2i, j \2V*&

b& j
b+1& j

V.*i, j
&

b+2& j
b+1& j

V.*k, j&2+ (x).

(III) If b>1, j=b,

min
x # 2i, b

(V.*i, b&1
&V.*i, j&2

)(x)= max
* # M(2i, b)

min
x # 2i, b

(V*&V.*i, j&2
)(x).

(IV) If b=1= j,

min
x # 2i, 1 \2V.*i, 0

+ :
k=1 k{i

V.*k, 0+ (x)

= max
* # M(2i, 1)

min
x # 2i, 1 \2V*+ :

m

k=1, k{i

V.*k, 0+ (x). K

Proof of Lemma 2.8. Let us give a convenient enumeration for the
measures .*i, j and intervals 2i, j (for convenience we introduce the extra
factor b�(b+1& j) in (b) of Lemma 2.7 for 1< j�b). We enumerate the
equations of Lemma 2.7 in the following way: first, the m equations in (a);
second, the m equations in (b) with j=2; then the m equations in (b) with
j=3, and so on.

If p is an integer then p$=[p�m], where [x] denotes the greatest integer
q such that q�x.

64 JORGE BUSTAMANTE GONZALEZ



File: 640J 292223 . By:CV . Date:06:02:00 . Time:16:06 LOP8M. V8.0. Page 01:01
Codes: 2211 Signs: 933 . Length: 45 pic 0 pts, 190 mm

Now for i=1, ..., a, set

�i=.*i&i $m, i $ and 2i=2i&i $m, i $+1 ; (3.5)

so we have a measure and a intervals.
Take, for i, j=1, ..., a ( j�i),

ci, j :={
2

(b&i $)2

b
if j=i

=b if 1�i, j�1 and j{i

&
(b&i $)(b&i $&1)

b
if j=m+i

0 otherwise

and ci, j=cj, i for i> j.
Now the system in Lemma 2.7 can be written as

min
x # 2i

:
a

j=1

ci, jV�j (x)= max
* # M(2i)

min
x # 2i \ :

a

j=i, j{i

ci, jV�j (x)+ci, i V* (x)+
for i=1, ..., a.

To prove that this last system has one and only one solution
[�i : i=1, ..., a], it is sufficient to show that the matrix C=(ci, j) satisfies
the following conditions (see [NiSo, Chap. V]):

(I) C is symmetric;

(II) if ci, j<0, then 2i & 2j=<; (3.6);

(III) C is positively defined.

It is easy to see that C is symmetric. If ci, j<0, with i> j, then j=i&m.
Taking into account that (i&m)$=i $&1 and

j& j $m=i&m&(i&m)$m=i&m&(i $&1)m=i&i $m,

we have

2i=�i&i $m, i $+1 and 2j=�i&i $m, i $ ,

then (see (1.1))

2i & 2j=<.

This proves (II) (C is a symmetric matrix).
Set

A=[(i, j ) : i� j, ci, j<0].
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Suppose that x1 , ..., xn are arbitrary real numbers, then

:
a

i, j=1

ci, j xi xj

=2 :
(i, j) # A

ci, j xi xj+ :
a

i=1

ci, i x2
i +2 :

m

i, j=1, i< j

ci, xi xj

= :
b&1

j=1

:
m

i=1

c( j&1)m+i, jm+i x( j&1)m+i xjm+i

+
2
b

:
a

i=1

(b&i $)2 x2
i +b \ :

m

i=1

xi+
2

&b :
m

i=1

x2
i

= :
b=1

j=1

:
m

i=1

(b+1& j)(b& j )
b

(x ( j&1) m+i&xjm+1)2

&
2
b

:
a

i=1

(b&i $)2 x2
i + :

m

i=1

b(b+1)
b

x2
i

+
2
b

:
a

i=1

(b&i $)2 x2
i +b \ :

m

i=1

xi+
2

&b :
m

i=1

x2
i

= :
b&1

j=1

:
m

i=1

(b+1& j)(b& j )
b

(x ( j&1)m+i&xjm+i)
2

+b \ :
m

i=1

xi+
2

+ :
m

i=1

x2
i �0. K

Proof of Lemma 2.9. Fix i and j; we know that .n, i, j � .i, j #
M(2i, j+1). Taking into account that

deg |n, i, j=:(n, i, j )

and

|wn, i, j (z)| 1�(:(n, i, j)=exp&
1

:(n, i, j )
log

1
wn, i, j (z)

=exp&V.n, i, j (z),

we have the assertion. K

4. A Special Case

Now we discuss Theorem 3. The additional conditions on g1, 2, 2 mean
that there exist real numbers :, ; such that g1, 2, 2&:z&; does not vanish
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in C"21, 2 . Then its reciprocal is a Markov function with measure sup-
ported in 21, 2 (see the Appendix in [KrNu]). Indeed, there exists a signed
measure +* such that

1
g1, 2, 2(z)&:z&;

=|
21, 2

d+*(s)
z&s

, z # C"21, 2 .

Hence

|
21, 2

P(s)((:s+;) Fn, 1, 1(s)&Fn, 1, 2(s)) d+*(s)

=|
21, 1

(PQn)(x)(:x+;&g1, 2, 2(x)) |
21, 2

d+*(s)
x&s

d+1, 1(x)

=|
21, 1

(PQn)(x) d+1, 1(x)=0,

where P # 6(n(1, 1)&1) is an arbitrary polynomial. Consequently,

(:s+;) Fn, 1, 1(s)&Fn, 1, 2(s)

has at least n(1, 1) zeros in 21, 2 . Let us prove that there exist no other
zeros. If for some polynomial R, deg R�n(1, 1)+1, with zeros in 21, 2 ,

(:z+;) Fn, 1, 1(z)&Fn, 1, 2(z)
R(z)

is holomorphic in C"21, 1 then

|
21, 1

Qn (x) P(x)(:x+;&g1, 2, 2(x))
d+1(x)
R(x)

=0

for P # 6(n(1, 1)+n(1, 2)&1) arbitrary. This says that Qn has at least
n(1, 1)+n(1, 2)+1 zeros in 21, 1 and this is not possible (see Lemma 2.2).
We have obtained the following

Proposition 3. There exists a polynomial w*n, 2 # 6*(n(1, 1)) such that
all zeros of wn, 2 lie in [c, d] and

|
21, 2

|w*n, 2(s)((:s+;Fn, 1, 1(s) Fn, 1, 2(s)| d+*(s)

= min
q # 6*(n(1, 1)) |

22, 1

|q2(s)|
|(:s+;) Fn, 1, 1(s)&Fn, 1, 2(s)| d+*(s)

|w*n, 2(s)|
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Using this extremal relation, reasoning as in the Proof of Theorems 1
and 2, we can obtain the result announced in Theorem 3. Taking g2, 2, 2 in
place of g1, 2, 2 , we obtain an analogous result.
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